POT BEARINGS 6-7-05

1.0 GENERAL

This item consists of furnishing, fabrication and installation of pot bearings in accordance with AASHTO Standard Specifications, the Standard Specifications, the recommendations of the manufacturer and the details shown on the plans and as specified herein.

Fixed pot bearings consist of a sole plate, a disc of elastomer in a steel cylinder with a snug fitting steel piston, masonry plate, anchor bolts, nuts and washers. Expansion pot bearings consist of a sole plate, a top steel plate with a polished stainless steel sheet facing bearing on a fixed pot bearing with a layer of virgin polytetraflouroethylene (PTFE) material on its top, masonry plate, anchor bolt assembly which includes anchor bolts, nuts, washers, pipe sleeves, a closure plate, grout and various sizes of standard pipe and any other necessary material as detailed on the plans.

2.0 MATERIALS

Use pot bearings produced by the same manufacturer.

Use AASHTO M270 Grade 50W (345W) for all steel in the pot bearings. Clean, coat, and seal the plates in the pot bearing assemblies except for the areas with special facings and the internal surfaces of pot, in accordance with the Special Provision for "Thermal Sprayed Coatings (Metallization)". Metallization of the internal surfaces of the pot is permitted provided these surfaces are then polished to a surface smoother than 63 micro inches (0.0016 mm) root mean square. Coat surfaces to a thickness of 8 mils (0.200 mm) minimum on all external parts. Repair surfaces that are abraded or damaged after the application of metallizing in accordance with the Special Provision for "Thermal Sprayed Coatings (Metallization)".

Galvanize all fill plates specified on the plans. Provide anchor bolts and nuts in accordance with the Standard Specifications.

When the maximum plan dimension of the sheet is 12" (300 mm) or less, provide a stainless steel sheet in expansion pot bearings that is at least 16 gage or 1/16" (1.6 mm). When the maximum plan dimension is greater than 12" (300 mm), provide a stainless steel sheet that is at least 11 gage or 1/8" (3 mm). Ensure that all stainless steel sheets are in conformance with ASTM A240/A167 Type 304 and polished to a minimum #8 mirror surface finish.

Blast clean the surface of the plate that will be attached to the stainless sheet to a near white condition in accordance with the Standard Specifications. Position and clamp the back of the stainless sheet that is to be in contact with the steel plate on the steel plate. Apply the stainless steel to the blast cleaned surface of the steel plate as soon as possible after blasting and before any visible oxidation of the blast cleaned surface occurs. Weld the stainless sheet continuously around its perimeter using a tungsten inert gas, wire-fed welder.

For the PTFE sheet, used as a mating surface for the stainless sheet, provide an unfilled virgin PTFE Sheet (Recessed) or a glass-fiber filled PTFE sheet, resulting from skiving billets formed under hydraulic pressure and heat. Provide resin that conforms to the requirements of ASTM D4894 or D4895.

To bond the PTFE and the piston, use heat cured high temperature epoxy capable of withstanding temperature of -320°F to 500°F (-195°C to 260°C).

Provide a neoprene or natural rubber elastomer with a durometer hardness of 50 that allows for a minimum rotation of 0.02 radians. Place a 1/64" (0.4 mm) thick unfilled PTFE disc on either side of the elastomer inside the bearing. Use a brass sealing ring with the neoprene or natural rubber elastomer.

3.0 DESIGN

Have the manufacturer design the pot bearings for the loads and movements shown on the contract plans. However, use the anchor bolt size, length, spacing and masonry plate thickness as shown on the contract plans and provide an overall height of the bearing assembly that is at least the height shown on the contract plans, but no more than 1/2 inch (13 mm) greater than this height. Either combine, cast as a single piece, or weld together the sole plate and top plate/piston and the cylinder with the masonry plate.

When designing the bearings, use the following allowable bearing stresses:

- On confined elastomer: 3500 psi (24.1 MPa)
- On PTFE Sliding Surface, filled or unfilled PTFE (recessed): 3500 psi (24.1 MPa)

Submit eight sets of shop drawings and one set of design calculations for review, comments and acceptance. Have a North Carolina Registered Professional Engineer check and seal the shop drawings and design calculations.

After the Engineer reviews the drawings and, if necessary, corrections are made, submit one 22" x 34" reproducible set of the working drawings.

4.0 SAMPLING AND TESTING

A. Sampling

The manufacturer is responsible for randomly selecting and testing sample bearings from completed lots of bearings. The manufacturer is also responsible for certifying that the completed bearings and their components have been tested and are in compliance with the requirements of this Special Provision. Have the manufacturer furnish the results of the tests to the Materials and Tests Engineer.

B. Testing

1. Proof Load Test

Load a test bearing to 150% of the bearing's rated design capacity and simultaneously subject it to a rotational range of 0.02 radians (1.146°) for a period of 1 hour.

Have the bearing visually examined both during the test and upon disassembly after the test. Any resultant visual defects, such as extruded or deformed elastomer or PTFE, damaged seals or rings, or cracked steel is cause for rejection.

Keep the steel bearing plate and steel piston in continuous and uniform contact for the duration of the test. Any observed lift-off is cause for rejection.

2. Sliding Coefficient of Friction

For all guided and non-guided expansion type bearings, measure the sliding coefficient of friction at the bearing's design capacity in accordance with the test method described below, and on the fifth and fiftieth cycles, at a sliding speed of 1 in/min (25 mm/min).

Calculate the sliding coefficient of friction as the horizontal load required to maintain continuous sliding of one bearing, divided by the bearing's vertical design capacity.

The test results are evaluated as follows:

- A maximum measured sliding coefficients of friction of 3%.
- A visual examination both during and after the test. Any resultant visual defects, such as bond failure, physical destruction, cold flow of PTFE to the point of debonding, or damaged components is cause for rejection of the lot.

Using undamaged test bearings in the work is permitted.

3. Test Method

For the test method and equipment, meet the following requirements:

- a. Arrange the test to determine the coefficient of friction on the first movement of the manufactured bearing.
- b. Clean the bearing surface prior to testing.
- c. Conduct the test at maximum working stress for the PTFE surface with the test load applied continuously for 12 hours prior to measuring friction.

d. Determine the first movement static and dynamic coefficient of friction of the test bearing at a sliding speed of less than 1 in/min (25 mm/min), not to exceed:

0.04 unfilled PTFE 0.08 filled PTFE

e. Subject the bearing specimen to 100 movements of at least 1 inch (25 mm) of relative movement and, if the test facility permits, the full design movement at a speed of less than 1 ft/min (300 mm/min). Following this test determine the static and kinetic coefficient of friction again. The specimen is considered a failure if it exceeds the values measured in (d) above or if it shows any signs of bond failure or other defects.

Bearings represented by test specimens passing the above requirements are approved for use in the structure subject to on-site inspection for visible defects.

5.0 Installation

Prior to shipment, seal the joint between the steel piston and the steel cylinder with a bead of caulk. Store pot bearings delivered to the bridge site under cover on a platform above the ground surface. Protect the bearings from injury at all times and, before placing the bearings, dry and clean all dirt, oil, grease or other foreign substances from the bearing. Do not disassemble the bearings during installation, except at the manufacturer's direction. Place the bearings in accordance with the recommendations of the manufacturer, Contract Drawings, and as directed by the Engineer. If there is any discrepancy between the recommendations of the manufacturer, Special Provisions, and Contract Drawings, the Engineer is the sole judge in reconciling any such discrepancy.

Provide preformed bearing pads under the masonry plates in accordance with Article 1079-1 of the Standard Specifications.

Do not install any bearing before the Engineer approves it.

6.0 BASIS OF PAYMENT

Payment will be at the lump sum contract price bid for "Pot Bearings" which price will be full compensation for furnishing all labor, materials, tools, equipment and incidentals required to complete the work in accordance with the Standard Specifications, this Special Provision, the manufacturer's requirements and as directed by the Engineer.